
Security Assessment

DinoX

Jun 18th, 2021

Table of Contents

Summary

Overview

Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings

DDN-01 : Unlocked Compiler Version

DDN-02 : Redundant Variable Initialization

DDN-03 : Ambiguous Use of `virtual`

DDN-04 : Usage of `send()` for sending Ether

DDN-05 : Conditional Optimization

DDN-06 : Ambiguous Use of `payable`

DDN-07 : Inefficient `storage` Read

DXC-01 : Unlocked Compiler Version

Appendix

Disclaimer

About

DinoX Security Assessment

Summary

This report has been prepared for DinoX smart contracts, to discover issues and vulnerabilities in the

source code of their Smart Contract as well as any contract dependencies that were not part of an

officially recognized library. A comprehensive examination has been performed, utilizing Static Analysis

and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

No notable vulnerabilities were identified in the codebase and it makes use of the latest security

principles and style guidelines. There were certain optimizations observed as well as security principles

that can optionally be applied to the codebase to fortify the codebase to a greater extent.

DinoX Security Assessment

Overview

Project Summary

Project Name DinoX

Description A typical ERC-20 implementation plus an ERC-721 with additional features.

Platform Ethereum

Language Solidity

Codebase DinoX

Commit db77db27e929de55f3b8e0062a0377fbb6949fed

Audit Summary

Delivery Date Jun 18, 2021

Audit Methodology Static Analysis, Manual Review

Key Components ERC-20, ERC-721

Vulnerability Summary

Total Issues 8

Critical 0

Major 0

Medium 0

Minor 2

Informational 6

Discussion 0

DinoX Security Assessment

https://github.com/dinoxdev/dinoxcontracts
https://github.com/dinoxdev/dinoxcontracts/commit/db77db27e929de55f3b8e0062a0377fbb6949fed

Audit Scope

ID file SHA256 Checksum

DDN DNX/Dinox.sol 455059c60f1549924105b71fc3db85ab391dfb6a8478f009205ba118304c7b05

DXC DNXC/DinoXCoin.sol d9ec3611c9f5f286f4f61fcf157399f76257dc70ac3c50bd8b90ce7666f8ce64

DinoX Security Assessment

Findings

ID Title Category Severity Status

DDN-01 Unlocked Compiler Version Language Specific Informational Acknowledged

DDN-02 Redundant Variable Initialization Coding Style Informational Acknowledged

DDN-03 Ambiguous Use of virtual Language Specific Informational Acknowledged

DDN-04 Usage of send() for sending Ether Volatile Code Minor Acknowledged

DDN-05 Conditional Optimization Gas Optimization Informational Acknowledged

DDN-06 Ambiguous Use of payable Language Specific Minor Acknowledged

DDN-07 Inefficient storage Read Gas Optimization Informational Acknowledged

DXC-01 Unlocked Compiler Version Language Specific Informational Acknowledged

DinoX Security Assessment

8
Total Issues

Critical 0 (0.00%)

Major 0 (0.00%)

Medium 0 (0.00%)

Minor 2 (25.00%)

Informational 6 (75.00%)

Discussion 0 (0.00%)

https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623230217131
https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623275853640
https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623276309473
https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623276427905
https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623277193891
https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623399240952
https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623434506216
https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623230217131

DDN-01 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational DNX/Dinox.sol: 2 Acknowledged

Description

The contract specifies an unlocked compiler version. An unlocked compiler version in the source code of

the contract permits the user to compile it at or above a particular version. This, in turn, leads to

differences in the generated bytecode between compilations due to differing compiler version numbers.

This can lead to an ambiguity when debugging as compiler specific bugs may occur in the codebase that

would be hard to identify over a span of multiple compiler versions rather than a specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can

be compiled at. For example, for version v0.6.2 the contract should contain the following line:

pragma solidity 0.6.2;pragma solidity 0.6.2;

Alleviation

The development team has acknowledged this exhibit but decided to not apply its remediation in the

current version of the codebase.

DinoX Security Assessment

https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623230217131
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L2

DDN-02 | Redundant Variable Initialization

Category Severity Location Status

Coding Style Informational DNX/Dinox.sol: 27~28, 80~81, 90~91 Acknowledged

Description

All variable types within Solidity are initialized to their default "empty" value, which is usually their zeroed

out representation. Particularly:

uint / int : All uint and int variable types are initialized at 0

address: All addresstypes are initialized toaddress(0)`

byte : All byte types are initialized to their byte(0) representation

bool : All bool types are initialized to false

ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type is ERC20) are

initialized to their zeroed out address (i.e. for a given contract ERC20 {} its default value is

ERC20(address(0)))

struct : All struct types are initialized with all their members zeroed out according to this table

Recommendation

We advise that the linked initialization statements are removed from the codebase to increase legibility.

Alleviation

The development team has acknowledged this exhibit but decided to not apply its remediation in the

current version of the codebase.

DinoX Security Assessment

https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623275853640
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L27
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L80
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L90

DDN-03 | Ambiguous Use of virtual

Category Severity Location Status

Language Specific Informational DNX/Dinox.sol: 218 Acknowledged

Description

The linked functions are not expected to be overridden, hence rendering the use of the keyword virtual

redundant.

Recommendation

We advise to remove redundant code.

Alleviation

The development team has acknowledged this exhibit but decided to not apply its remediation in the

current version of the codebase.

DinoX Security Assessment

https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623276309473
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L218

DDN-04 | Usage of send() for sending Ether

Category Severity Location Status

Volatile Code Minor DNX/Dinox.sol: 185 Acknowledged

Description

After EIP-1884 was included in the Istanbul hard fork, it is not recommended to use .transfer() or

.send() for transferring ether as these functions have a hard-coded value for gas costs making them

obsolete as they are forwarding a fixed amount of gas, specifically 2300 . This can cause issues in case the

linked statements are meant to be able to transfer funds to other contracts instead of EOAs.

Recommendation

We advise that the linked .transfer() and .send() calls are substituted with the utilization of the

sendValue() function from the Address.sol implementation of OpenZeppelin either by directly

importing the library or copying the linked code.

Alleviation

The development team has acknowledged this exhibit but decided to not apply its remediation in the

current version of the codebase.

DinoX Security Assessment

https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623276427905
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L185
https://eips.ethereum.org/EIPS/eip-1884
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/87326f7313e851a603ef430baa33823e4813d977/contracts/utils/Address.sol#L37-L59

DDN-05 | Conditional Optimization

Category Severity Location Status

Gas Optimization Informational DNX/Dinox.sol: 190 Acknowledged

Description

The linked code segment can be omitted with the use of a return variable utilization.

Recommendation

We advise to utilize a return variable and invert the linked conditional.

Alleviation

The development team has acknowledged this exhibit but decided to not apply its remediation in the

current version of the codebase.

DinoX Security Assessment

https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623277193891
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L190

DDN-06 | Ambiguous Use of payable

Category Severity Location Status

Language Specific Minor DNX/Dinox.sol: 184 Acknowledged

Description

The `rawAll()

Recommendation

We advise to remove the payable keyword from the withdrawAll() function.

Alleviation

The development team has acknowledged this exhibit but decided to not apply its remediation in the

current version of the codebase.

DinoX Security Assessment

https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623399240952
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L184

DDN-07 | Inefficient storage Read

Category Severity Location Status

Gas Optimization Informational DNX/Dinox.sol: 35, 39, 78, 94, 50, 51, 52, 55, 107 Acknowledged

Description

Inefficient storage reads represent the redundant storage reads where gas can be saved by storing

storage variables in local variable.

Recommendation

We advise to introduce a local variable instead.

Alleviation

The development team has acknowledged this exhibit but decided to not apply its remediation in the

current version of the codebase.

DinoX Security Assessment

https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623434506216
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L35
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L39
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L78
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L94
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L50
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L51
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L52
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L55
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNX/Dinox.sol#L107

DXC-01 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational DNXC/DinoXCoin.sol: 2 Acknowledged

Description

The contract specifies an unlocked compiler version. An unlocked compiler version in the source code of

the contract permits the user to compile it at or above a particular version. This, in turn, leads to

differences in the generated bytecode between compilations due to differing compiler version numbers.

This can lead to an ambiguity when debugging as compiler specific bugs may occur in the codebase that

would be hard to identify over a span of multiple compiler versions rather than a specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can

be compiled at. For example, for version v0.6.2 the contract should contain the following line:

pragma solidity 0.6.2;pragma solidity 0.6.2;

Alleviation

The development team has acknowledged this exhibit but decided to not apply its remediation in the

current version of the codebase.

DinoX Security Assessment

https://accelerator.audit.certikpowered.info/project/7e1e85b0-c8fe-11eb-909e-09033214f04e/report?fid=1623230217131
https://github.com/dinoxdev/dinoxcontracts/blob/db77db27e929de55f3b8e0062a0377fbb6949fed/DNXC/DinoXCoin.sol#L2

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private

or delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

DinoX Security Assessment

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may

not be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s

prior written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project

or team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing process intending to help

our customers increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

DinoX Security Assessment

About

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

DinoX Security Assessment

